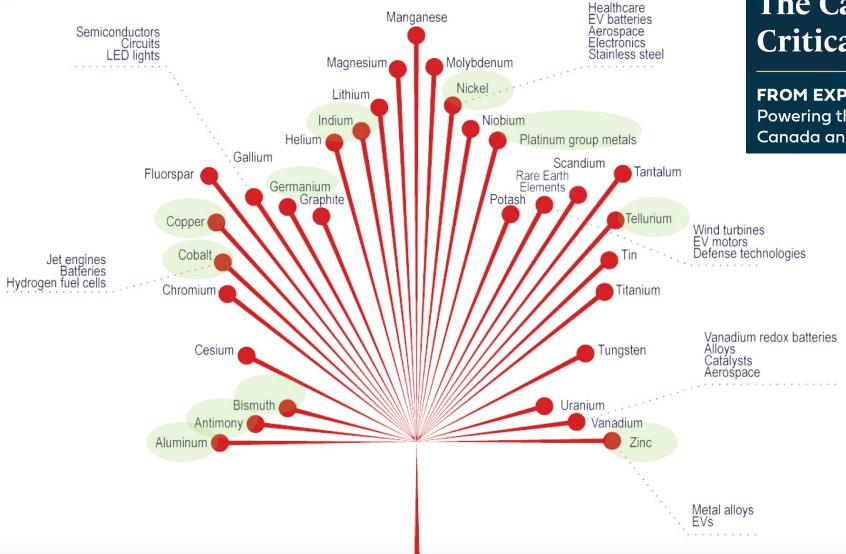
Role of mineral processing, smelting and refining in Canada's critical minerals strategy – strengths, opportunities, weaknesses and threats

Laurie Reemeyer
Principal Consultant
Resourceful Paths, Vancouver, BC

Jun 27, 2023

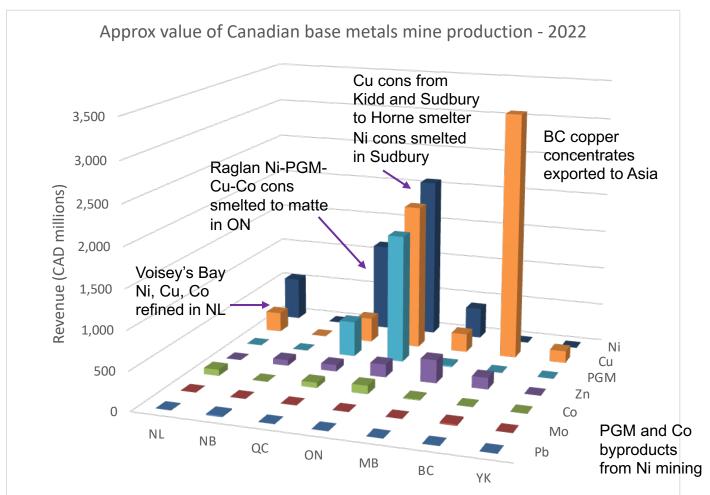

Introduction

- Canadian Critical Minerals Plan and base metals context
- Base metals industry structure in Canada and changes in last 20 years
 - Mining and mineral processing
 - Smelting and refining
 - Trade in intermediate and refined products
- Strengths, weaknesses, opportunities and threats
- New technologies and analogies for successfully renewing base metals smelting and refining in Canada

The Canadian Critical Minerals Strategy

FROM EXPLORATION TO RECYCLING:

Powering the Green and Digital Economy for Canada and the World


Focus for today:

- Copper
- Nickel
- Zinc
- Associated companion metals/byproducts
- Aluminum as an analogy

Canada Base Metals Mining

 Decline in all Canadian base metals mine production from 2002 to 2022, but most severe in Pb and Zn

Metal	2002	2022
Cobalt	5,093	3,063
Copper	600,200	510,782
Lead	97,000	8,247
Nickel	187,791	143,266
Zinc	891,924	208,147

Canada Base Metals Smelting & Refining

Feed from Cuba

Facility Name	Location	Company	Plant type	Primary	Product form	Co-products
Horne	Rouyn-Noranda, QC	Glencore	Smelter	Cu	Anode Cu	Au, Ag, H2SO4
CCR	Montreal, QC	Glencore	Refinery	Cu	Cathode Cu	Au, Ag, Te, Se, PGM
Sudbury INO	Falconbridge, ON	Glencore	Smelter	Ni	Ni matte	Cu, Co, PGM, H ₂ SO ₄
Copper Cliff	Sudbury, ON	Vale	Smelter & refinery	Ni	Ni oxides, pellets, powders	Cu anode, Co and Au-Ag-PGM residues
Port Colborne	Port Colborne, ON	Vale	Refinery	Со	Electrolytic Co	Co, PGM
Long Harbour	Long Harbour, NF	Vale	Refinery	Ni	Ni cathode	Co, Cu
Fort Saskachewan	Fort Saskachewan, AB	Sherritt	Refinery	Ni	Electrolytic Ni	Co, (NH ₄) ₂ SO ₄
CEZinc	Valleyfield, QC	Glencore	Electrolytic refinery	Zn	Zn ingot	Cu cake, H ₂ SO ₄
Trail	Trail, BC	Teck	Electrolytic refinery	Zn	Zn ingot	Cd, In, GeO ₂ , S, H ₂ SO ₄ , SO ₂ (I), (NH ₄) ₂ SO ₄
Trail	Trail, BC	Teck	Smelter & refinery	Pb	Refined Pb ingot	Ag, Au, Bi, NaSbO ₃ , Cu ₃ (AsO ₄) ₂ , CuSO ₄ , H ₂ SO ₄

Feeds from USA, Peru

Primarily Canadian feed

Canadian and imported feed

Primarily imported feed

Feeds from South America

Base Metals Smelter and Refinery Locations 2022

- Several smelters
 located inland due
 to proximity to
 legacy mines
- Becomes a limitation as transition to treating external concentrates

Smelter Closures

- Stream of Cu, Ni, Zn and Pb smelting/refining closures since 2002
 - Challenges: emissions controls (SO₂), reduced access to feed stocks due to mine closures, high transport costs (for acid out, custom concentrates in)
 - One new refinery: Long Harbour, Ni, Cu, Co, mandated in province processing

Name	Location	Company	Opened	Closed	Plant type	Primary	Product form	Co-products
Gaspe	Gaspe, QC	Noranda	1955	2002	Smelter	Cu	Anode Cu	H ₂ SO ₄
Copper Cliff	Sudbury, ON	Vale	1930	2005	Refinery	Cu	Cathode Cu	
Kidd Cu	Timmins, ON	Xstrata	1980	2010	Smelter & refinery	Cu	Anode Cu	H ₂ SO ₄
Kidd Zn	Timmins, ON	Xstrata	1980	2010	Electrolytic refinery	Zn	Zn ingot	In, H ₂ SO ₄
Flin Flon	Flin Flon, MB	Hudbay	1930	2010	Smelter & refinery	Cu	Anode Cu	
Thompson	Thompson, MB	Vale	1961	2018	Smelter & refinery	Ni	Ni cathode	
Brunswick	Belledune, NB	Glencore	1966	2019	Smelter & refinery	Pb	Refined Pb ingot	Ag, Bi, Sb, Cu
Flin Flon	Flin Flon, MB	Hudbay	1993	2022	Electrolytic refinery	Zn	Zn ingot	

Decline in Refined Metal Production

 Decline in refined base metal production has followed mine and smelter closures and increased import reliance for copper and zinc concentrates for remaining plants

	2002	2022
Refined Copper	495,000	310,000
Refined Lead (primary)	170,000	56,000
Refined Zinc	793,000	535,000
Refined Nickel	144,000	125,000
Cobalt metal	4,300	2,400

Approximate refined production from both Canadian and imported sources

SO₂ Emissions Abatement vs. Closure

https://worldfoto.photoshelter.com/image/I0000amJw.ZOQjsg

https://www.worldatlas.com/articles/the-tallest-smokestacks-in-canada.html

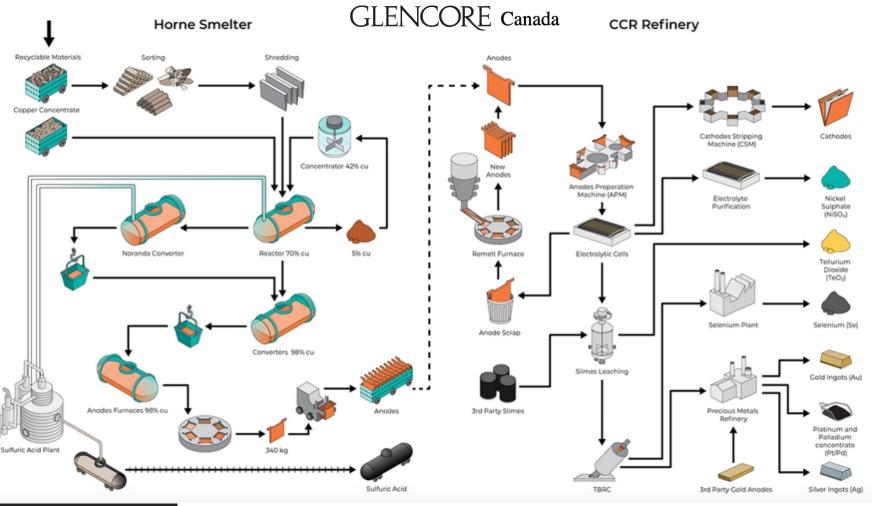
Sudbury

https://en.wikipedia.org/ wiki/Inco_Superstack#/ media/File:Sudbury_su nset.JPG

Base Metals and their Companions

Base metal	Lead and Zinc	Copper	Nickel	
Major economic		Gold		
companions (revenue paid to mine)			Platinum group	
	Silv			
		Col	balt	
		Molybdenum	Copper	
		Uranium		
Minor economic companions (generally not paid	Copper	Zinc	Silver	
	Gold	Lead	Gold	
to mine, revenue	Germanium	Bismuth		
to refinery if recovered)	Indium	Nickel		
	Bismuth	Selenium		
	Antimony	Tellurium		
	Cadmium			
Deleterious (mine penalized)	Arsenic			
	Merc			

- Indicative relationships.
 Companions are ore dependent.
- Minor companions smelter and refinery configuration and environmental regulations determine whether penalty or revenue source.
- Without smelting and refining, value from critical mineral companions not realized


Key:

Critical Mineral

Horne and CCR: the Canadian Cu Value Chain

- Integrated Cu smelter and refinery in Quebec
- Smelter opened 1927 to treat concentrates from Horne mine, closed 1976
- Horne now treats
 Canadian and imported concentrates and recycled materials
- Precious and critical minerals byproducts core to business model
- CCR cathode feeds downstream Cu semi manufacturing

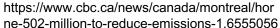
Horne capacity 250,000 t/y Cu

CCR capacity 325,000 t/y Cu

https://www.glencore.ca/en/c cr/ce-que-nous-faisons/duconcentre-au-produit-fini

Horne Smelter – Future in the Balance

Horne Smelter says it will follow Quebec's 5-year arsenic emissions target, but it wants financial aid



Reduction will take technological overhaul costing \$502M, says Glencore

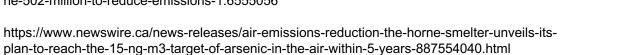
Verity Stevenson · CBC News · Posted: Aug 18, 2022 10:54 AM PDT | Last Updated: August 18, 2022

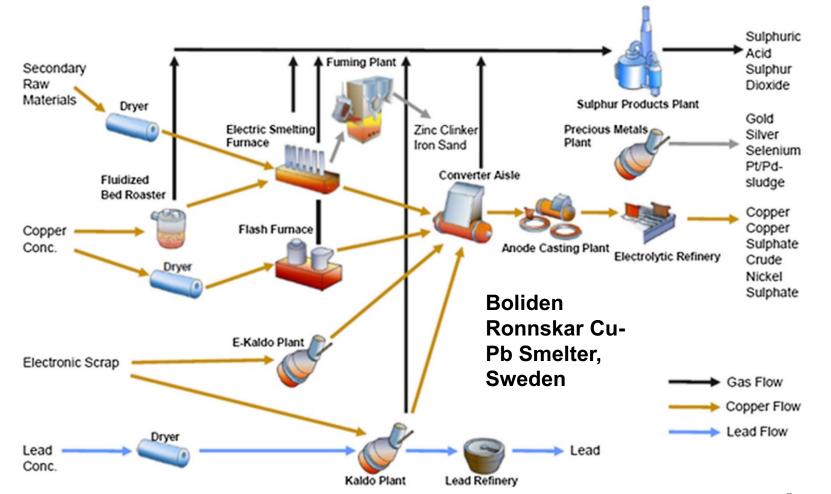
- Complex smelter transformation and emissions reduction control project that is looking to incorporate new smelting technology
- Incorporates expanded buffer zone between smelter and town
- Analogous to other smelter transformations, e.g. Port Pirie, South Australia

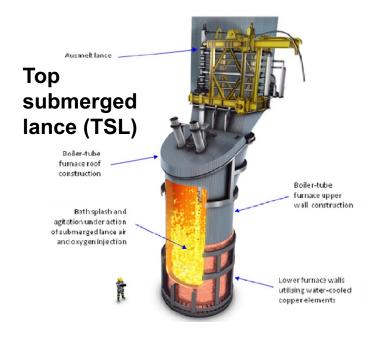
Resourceful Paths

Neighbours to be relocated as Glencore's Horne smelter grapples with meeting emissions targets

Canada's only operating copper smelter, Horne, belonging to Glencore (LSE: GLEN) in Rouyn-Noranda, Que., is facing increased scrutiny as it aspires to [...]


By Marilyn Scales • March 20, 2023 • At 2:25 pm

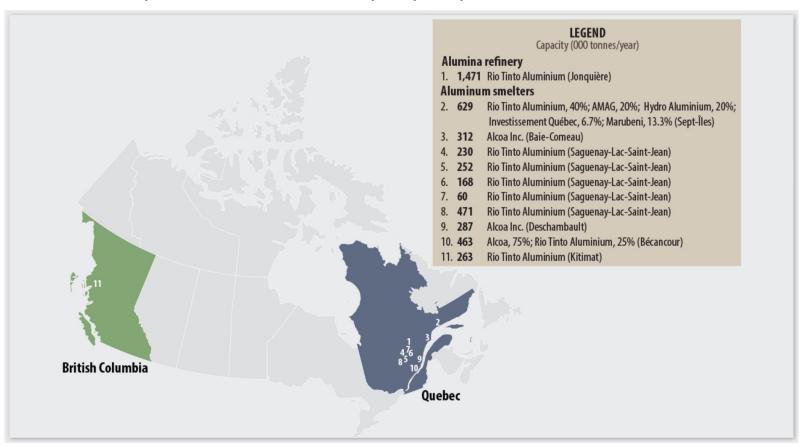



https://www.canadianminingjournal.com/news/neighbours-to-be-relocated-as-glencores-horne-smelter-grapples-with-meeting-emissions-targets/

Strengths	Weaknesses		
Stable economy	Cu, Pb and Zn mining, smelting and refining has been in decline for over 20 years. Where Canada was once a major player, it is now diminished and ability to recover companion critical minerals is diminished.		
Proximity to US market	Limited use of newer smelter technologies (e.g. top-submerged lance)		
Large, long life nickel sulphide resource base	Assets dominated by global multinationals with limited allegiance to Canada (e.g. Glencore, Vale)		
Cheap hydroelectric power in BC, QC	History of production disruption due to industrial action, esp. in Ontario		
Vertically integrated producers in Ni, Co and Cu (esp. Vale and Glencore)	Slow permitting and high costs of environmental compliance		
Most smelters now comply with stringent emissions standards after significant investments in pollution controls (sulphuric acid plants)	Several plants are remote from customers, long transport distances to markets/from suppliers		
Long range, high quality research capability at National Research Centre with strong focus on battery materials	Sulphuric acid markets are significant distance away from existing smelters.		
Perceived as responsible supplier	Aging demographics of workforce in plants.		
Opportunities	Threats		
Synergies for developing lithium ion battery materials supply chains - Li, Ni, Co, graphite	Massive expansion of Indonesian nickel supply including Class 1 from new HPAL plants (making MHP - mixed hydroxide precipitate)		
Stronger trade agreements with ally countries on trading and processing intermediate products	Loss of research, consulting and engineering base, esp. to support pyrometallurgy		
Green metals - sustainable supply chain - ethical primary sourcing and expanded recycling (esp. for Ni, Cu and Co from BC, ON, QC, NL)	Volatility in sulphuric acid prices due to variations in S supply and demand can significantly threaten by-product revenue		
Future treatment of Ni-Cu-PGM concentrates from Mid-West USA (MN, MI)	Failure to successfully complete emissions controls and transformation of Horne smelter leads to collapse of Canadian refined copper and downstream manfacturing sector		
Expansion of fertilizer and chemical industries to provide large and stable market for by-product sulphuric acid.	Social resistence to industrial development to renew and grow smelting and refining capacity for base metals		

New Smelting Technology

Look to developments in Europe, Australia and USA using newer smelter furnace technologies and multi-metal flowsheets

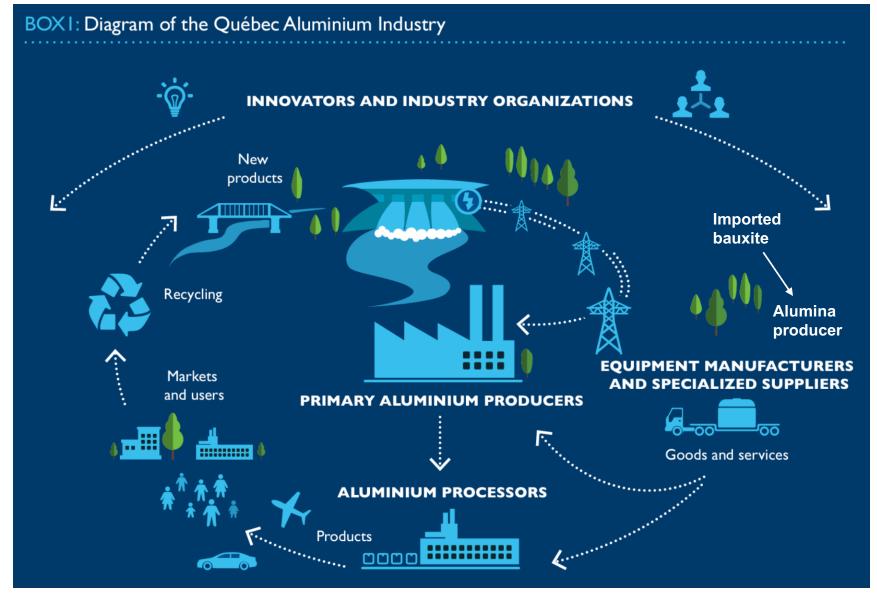


https://link.springer.com/article/10.1007/s40831-018-0157-5

Aurubis doubles U.S. investment in multimetal recycling facility

Can we learn from Quebec Aluminum Sector?

Canadian refinery and smelters estimated capacity and production, 2021



Heavy concentration of aluminum smelting in Quebec, accompanied by one large alumina refinery

https://natural-resources.canada.ca/ournatural-resources/minerals-mining/mineralsmetals-facts/aluminum-facts/20510

Self-supporting industrial and economic ecosystem

https://www.investquebec.com/documents/int/publications/strategie_aluminium_en.pdf

World Leading Aluminum Smelting Industry

- Quebec aluminum hub in Saguenay-Lac-Saint-Jean
- Low C smelting technology
 - Rio Tinto AP60 technology Complexe Jonquière smelter expansion and retirement of Arvida Smelter - C\$1.4 B investment including C\$150 M support from Quebec Government
 - Rio Tinto led consortium Elysis zero carbon aluminum smelting
- Aluminum sector is strongly supported by the 2015-2025 Québec
 Aluminum Development Strategy
- Provides a model for other initiatives, e.g. Quebec's Battery Strategy –
 hub around Bécancour including GM-Vale Ni sulphate plant

Conclusions

- Smelting and refining of Cu, Ni and Zn and their companion critical minerals have been in decline in Canada for 20 years due to drops in mine supply, tightening emissions requirements and high costs
- Smelting and refining are key links in the battery and EV value chains that Canada is now trying to develop
- Investment in technology and emissions control is essential for competitiveness and social support
- Successful aluminum industry hub in Quebec provides a model for successful renewal and growth for base metals smelting and refining
- We need to get on with it!

Questions?

Laurie Reemeyer
Principal Consultant

<u>laurie@resourcefulpaths.com</u> <u>www.resourcefulpaths.com</u>

