

Economic and sustainability drivers for copper-gold deposits

Presentation - CIM North Central BC Branch
Laurie Reemeyer, P.Eng., Principal Consultant, Resourceful Paths
21 June 2017

Introduction

- Economic drivers
 - Revenue
 - Opex
- Process trade-offs and responding to varying metal prices
 - Consumables strategies
 - Production capacity strategies
- Sustainability metrics
 - Types of metrics
 - Energy and GHG emissions, tailings and water management

Revenue

- Metal produced * Metal price?
- It depends...

Keeping it simple

- Rules of thumb can help, e.g.:
 - ~80% net realizable Cu in concentrate accounts for payables, TC, RC, transport
 - ~95% net realizable Au in Cu concentrate accounts for payables, RC
 - Can calculate factors for a given mine, e.g. clean, high grade concentrates close to port have higher net realizable Cu
- Where possible, look at everything on a \$/t ore or \$/t metal basis, not \$/t concentrate
- Check detailed revenue calcs against rules of thumb, sometimes the financial spreadsheets have errors

Simplified revenue model – Cu-Au

Net revenue estimate

	mt/y	Cu	Au	Ag	Total \$/t	Total \$M/y
		%	g/t	g/t		
Mill feed	20.0	0.35%	0.4	4		
Metal prices	US\$/lb or oz	\$2.50/lb	\$1,250/oz	\$18.00/oz		
	US\$/t or g	\$5,511	\$40.19	\$0.58		
Contained metal value (US\$/t)		\$19.29	\$16.08	\$2.31	\$37.68	\$754
Recovery (est)		90%	70%	50%		
Recovered metal value (US\$/t)		\$17.36	\$11.25	\$1.16	\$29.77	\$595
NSR content (est)		80%	95%	90%		
NSR value (US\$/t)		\$13.89	\$10.69	\$1.04	\$25.62	\$512

- What's 1% Cu recovery worth? About \$0.20/t * 80% = \$0.16/t
- What's 1% Au recovery worth? About \$0.16/t * 95% = \$0.15/t
- What's 1% Ag recovery worth? Not much...

Effect of streaming

- Lowers metal price realized by mine hence lowers revenue
- Changes revenue vs. opex trade-offs reducing opex becomes a stronger value driver than revenue increase
- Not all streaming deals are created equal understand to determine how it affects marginal revenue and profit
- No free lunch

Operating costs – where to focus?

The big ones

The ones you can do something about

The ones that don't hurt revenue

Operating costs – where to focus?

- Pareto analysis can be useful to visualize costs
- Consider grouping of costs to best understand drivers
 - By department function
 - By input type
- For consumables, consider specific consumption and unit price, e.g.:
 - Power unit cost (\$/t ore) = kWh/t ore * \$/kWh
 - Grinding media unit cost (\$/t ore) = kg media/t ore * \$/kg media

Casino Concentrator Opex by plant and cost areas

■ Labour ■ Power ■ Liners ■ Grinding media ■ Reagents ■ Maintenance

Source: 2013 Casino NI 43-101 Tech Report, M3

Supplies/services

Operating costs – where to focus?

- Casino case concentrator opex dominated by:
 - Power for grinding, plus flotation and tailings disposal
 - Grinding media
 - Reagents in flotation
 - Typical for low grade Cu-Au sulphide operation
- Other areas such as labour are relatively minor
- Ensure that focus is on the right areas
 - Understand production, metallurgical, cost trade-offs of any changes
 - Consider the management focus and time needed to make a change

Understanding trade-offs

- What does it mean to be on different blocks on the cube?
- E.g.: soft ore with cheap power =
 10 kWh/t * \$0.05/kWh = \$0.50/t
- E.g.: hard ore with expensive power =
 - 20 kWh/t * \$0.15/kWh = \$3.00/t
- Can revenue sustain these costs?

Grind size – recovery trade-offs

- Recovery often falls at coarser grinds
- Should we cut power costs or maximize recovery?
- It depends...

Source: L Reemeyer, Analysis of Copper Concentrator Performance Using Sized and Liberation Data, 1995

Understanding trade-offs

- Changes to consumable inputs may cause trade-offs, e.g.:
 - Less kWh/t = lower cost = coarser grind and potentially lower recovery
 - Switch to high quality media = less kg/t consumed but higher \$/kg media
 - New reagent changes usage rate, unit price, metallurgical performance
- Small drop in recovery may negate opex saving, e.g.:
 - Reducing 1.5 kWh/t at \$0.10/kWh saves \$0.15/t
 - But if 1% Cu recovery ~\$0.15/t, a 1% recovery loss would wipe out savings
- May need statistical analysis on plant performance to determine if change increases or decreases profit

Statistics in opex-revenue trade-offs

- How do we know if we're improving?
 - Use statistics and a t-test
- If variability is high, takes longer to see a result
 - Need a larger sample number to be sure of difference in mean
- Trial cost savings/improvements when steady, otherwise will get lost in noise

Make summer hay, survive bleak winter...

- How to maximize life of mine profit and survive cycles?
 - Save the most metal when prices are high rather than maximize production when prices are low
 - Low prices can we drop opex more than we sacrifice revenue?
 - High prices can we grow revenue more than we increase opex?
- What could this look like?
 - High prices selective mining, segregation, ore sorting to boost head grade
 - Low prices scale back production, shutdown sections of mine and plant relies on turndown ability ore and site specific
 - Low grade stockpiles campaign treated at end of mine life when profitable

Sustainability metrics

- Focus on environmental metrics in this presentation easier to quantify, but social metrics also must be considered
- Risk based metrics e.g. probability and likelihood of a bad event occurring:
 - Tailings embankment failure
 - Water contamination event
- Impact and emissions metrics, e.g.:
 - Water consumption
 - GHG emissions

Sustainability metrics - examples

Category	Description	Metric type	Example units		
Water consumption	Quantity of water consumed in operations	Temporal	ML/y		
		Specific	m ³ /t ore		
		Specific	m³/t Cu produced		
Water recycled	Proportion of recycled water to total water consumed	Ratio	%		
Energy consumption	Quantity of energy consumed in operations	Temporal	GJ/y		
		Specific	kW/t ore milled		
		Specific	GJ/t Cu produced		
GHG emissions	GHG emissions produced from operations	Temporal	t CO ₂ -e/y		
	(Scope 1 and 2)	Specific	t CO ₂ -e/t Cu produced		
Disturbance footprint	Land area disturbed by mining excavation and waste facilities, or area rehabilitated	Temporal	ha/y		
Waste generated	Quantity of waste rock and tailings	Temporal	t/y waste rock		
	generated by operations	Specific	t tailings/t Cu produced		

Source: L Reemeyer, 2017

Reducing environmental impacts

Reducing GHG emissions:

- Mill less t
- Use less energy (e.g. kWh/t) efficient equipment/flowsheets, design parameters (e.g. coarser grind size)
- Reduce GHG intensity of energy inputs (e.g. switch to low C power, fuel)
- Less consumables use (e.g. 1 t grinding media, ~2 t CO₂ embedded emissions)

Reducing water consumption

- For low grade Cu-Au projects, mostly about reducing water loss to tailings
- Make less tailings (i.e. increase head grade, reduce ore treated)
- More intensive tailings dewatering (e.g. high density/paste thickening, filtration) - coarser streams easier to dewater

Tailings affecting process design

- Mount Polley and Samarco tailings failures have increased scrutiny on tailings management
 - Increased consideration of/requirements for dry stack tailings
 - Filter performance heavily affected by grind size and fines content in tailings
 - If tailings dewatering becomes significant operating cost (e.g. >\$2/t), will this influence process design? (Hint: it should).
- Interaction between tailings disposal and ARD management
 - Conflict between water covers and embankment failure risks
 - Consider flowsheets that segregate sulphides from tailings both for metallurgical recovery and environmental management

Head grade is your friend

- Higher head grade = more metal production per t ore treated
- Costs (\$/t payable metal) fall as head grade rises due to lower consumable inputs/t metal produced
- Less t ore treated means lower emissions, lower water consumption, less tailings, less risk
- Consider all options to boost head grade (e.g. selective mining, preconcentration, etc.) within limits of geology

Reducing impacts and economics

- If reducing consumption of power, media, reagents, etc., need to consider economic trade-off – opex vs. revenue
- Mining operations can be risk averse, consider trials that are well monitored and reversible
- Calculate and report both cost and environmental metrics
- Often sustainable business is good business (e.g. by eliminating waste in all forms)

Conclusions

- Basic techno-economic models help understand payable revenue by metal, opex and cash flow drivers
- Pareto analysis and driver trees shows production and cost parameters to focus on
- Reducing consumables can save \$, reduce environmental impact, but check metallurgical and economic trade-offs
- Tailings risks will start driving changes in process
- Head grade is your friend